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a b s t r a c t

A structural path rank ordering process under transient excitations requires a good

knowledge of the interfacial path forces, which are difficult to directly measure. Four

time domain methods to estimate the interfacial forces are proposed and comparatively

evaluated with application to linear time-invariant, proportionally damped discrete

domain technique to calculate the interfacial forces is outlined. Next, the frequency

domain estimation methods, based on the sub-system concept are reviewed, and an

inverse Fourier transform scheme is introduced. An indirect method of estimating

interfacial force in transient state is then developed through an inverse procedure of

modal analysis. The sub-system approach is employed to obtain the interfacial forces

based on the forced vibration response of the original system and modal data of the sub-

system. Finally, an approximate time domain scheme is suggested that could be used

only if the system properties are known or precisely estimated. Although the proposed

indirect methods are designed for eventual experimental applications, this article

provides numerical feasibility studies via a simple source–path–receiver system (with

parallel vibration paths) that has five translational degrees of freedom. The proposed

methods are compared under ideal impulse force excitation input and a periodic

sawtooth load (without and with Gaussian noise) to observe the starting transients as

well as subsequent motions and interfacial forces. Preliminary comparisons with a

laboratory experiment are very promising.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The knowledge of dynamic forces at sub-system interfaces or attachments is of interest from both scientific and
practical perspectives [1–4]. The nature of in situ interfacial forces can be illustrated by a generic vibration problem of
Fig. 1, which conceptually describes many real-life problems where multiple vibration transmission paths exist [4–6]. Here
a vibration source transmits dynamic forces and motions to the receiver through three parallel structural paths; the
receiver is assumed to be disconnected from other structures. In our system, interfacial forces are denoted by qijðtÞ in time
(t) domain or by ~Q ijðoÞ in frequency (o) domain, where the subscripts i and j refer to the adjoining sub-systems i and j. In
most practical cases, installation of the dynamic force transducer(s) is impractical (or very difficult). Moreover, a force
transducer would alter the interfacial conditions anyway unless there is significant mobility mismatch over a particular
frequency regime [7]. Therefore, indirect methods are necessary to estimate the interfacial forces. It is the chief goal of this
article with focus on time domain forces qijðtÞ.
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Fig. 1. Illustration of interfaces in a vibration problem with multiple transmission paths.
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Fig. 2. Example case 5-DOF mechanical system depicting three parallel paths, single source and single receiver. Like Fig. 1, each path is assumed to

possess mass only and all interfaces are described by linear springs and viscous damping elements.
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For the sake of simplicity, assume that in situ interfaces can be described by linear, stiffness kij and viscous damping cij

terms as illustrated in Fig. 2, which represents a discrete representation of Fig. 1. The interfacial forces can be directly
calculated by the following:

qijðtÞ ¼ �kijðxiðtÞ�xjðtÞÞ�cijð _xiðtÞ� _xjðtÞÞ (1a)

~Q ijðoÞ ¼�ðkijþ jocijÞð
~X iðoÞ� ~X jðoÞÞ (1b)

where qijðtÞ and ~Q ijðoÞ are the interfacial forces in time and frequency domains, respectively. The tilde denotes a complex
value (j¼

ffiffiffiffiffiffiffi
�1
p

). The lower case symbols such as xiðtÞand xjðtÞ are the displacements in time domain of the adjoining
inertial elements; upper case symbols ð ~X iðoÞ; ~X jðoÞÞ are complex-valued displacements in frequency domain and dots
above the displacements represent time derivatives. Note that the relative motions of the adjoining structures and in-situ
interfacial properties must be precisely known if Eq. (1a) were to be experimentally or computationally implemented
(assuming a linear system of course). Now consider when the contact (interfacial) condition is very hard (i.e. kij is very
high), the case where the estimated force could contain significant errors due to difficulties in measuring relative responses
ðxiðtÞ�xjðtÞ; _xiðtÞ� _xjðtÞÞ. Very small differences in the displacements could induce a large error in the force. Further, in-situ
stiffness and damping values are often unknown and thus implementation of Eq. (1a) is rather elusive in practical systems.
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There is a significant body of literature on the frequency domain based transfer path analysis methods [1–6,8–12],
where the interfacial forces are implicitly or explicitly estimated. For instance, several indirect frequency domain
formulations have been established to estimate interfacial forces or moments in discrete systems [1–4]. These employ
frequency response functions (FRFs) of the subsequent sub-system only at the driving points, assuming that the six-
dimensional motions are somehow known (or measurable) at any location [1]. Experimental measurement burden could
be significantly reduced provided that the interfacial forces are estimated only from the forced responses and FRFs at the
driving point.

Although the transfer path analysis technique is well studied in the frequency domain, very few attempts have been
made to formulate it for transient states in time domain [13]. A major difficulty in time domain is related to the
convolution product whereas it corresponds to a simple product in frequency domain. Earlier time domain studies mostly
focused on modal testing and parameter identification techniques [14–17]. Some recent studies have proposed system
identification schemes in time domain that estimate stiffness and damping properties using measured accelerations
[18–20]. A few researchers have also analyzed the deconvolution problem to indirectly estimate the unknown force
excitations given the transient response data [21–25]. Transfer function based methods have been suggested to solve the
inverse problem with an emphasis on the Tikhonov and truncated singular value decomposition regularization to
overcome the ill-conditioned nature of the inverse problem. The L-curve and generalized cross-validation methods have
been utilized to select the optimal regularization parameter. Yet, other approaches, such as the sum of weighted
accelerations technique, and inverse filtering, have been proposed to solve the inverse problem [26–28]. The above
mentioned force reconstruction methods, however, concentrate on the estimation of input force(s) and not on the
constraint or interfacial forces. This paper outlines several methods to estimate the transient interfacial forces and
proposes an alternative time domain approach to solve the inverse problem with an emphasis on interfacial forces.

2. Problem formulation

2.1. Scope and objectives

Consider a linear, time-invariant mechanical or structural system consisting of mass M, proportional viscous damping
C and stiffness K matrices of dimension N (bold symbols indicate matrices or vectors):

M €xðtÞþC _xðtÞþKxðtÞ ¼ fðtÞ (2)

where fðtÞ is the external force vector and xðtÞ is the displacement response vector. Knowing the system response xðtÞ to
either harmonic or transient excitation, interfacial forces ðqijðtÞÞ could be indirectly estimated by utilizing the sub-system
approach [1], which is based on the premise that the interfacial forces of a system are equivalent to the external forces
acting on its sub-systems that are subsequent (downward) from the interfacial connections.

The force calculation methods in frequency domain estimate time-averaged solutions that correspond to the steady
state responses in time domain [29,30]. For a linear time-invariant system with sufficient damping, the steady-state would
be reached within a short time, and the time-averaged values (in frequency domain) could give the primary solution.
However, when the system is lightly damped or being excited by a pure transient excitation, a time domain analysis is
desirable and particularly useful from the application perspective, including the dynamic design of attachments and
connection elements. For instance, an engine start-up, rotating machinery shut-down, impacts generated due to clearances
(such as in gears) or an intermittent operation of an electro-mechanical actuator are some practical examples where
significant transient or impulse-like forces are observed. Accordingly we establish the following objectives of this paper: 1.
Formulate an indirect interfacial force estimation method under the transient state for a proportionally damped discrete
system with arbitrary excitation using the inverse modal analysis. 2. Conduct feasibility studies of this method by
comparing it with the direct time domain solution and the inverse frequency domain approach. 3. Conduct a laboratory
experiment corresponding to Fig. 1 and validate the proposed method on a preliminary basis.

One difficulty in the direct or indirect force estimation method (in time domain) is related to the numerical evaluation
of the convolution integral. We overcome this difficulty by assuming that the system is properly discretized by choosing
representative response points. The evaluation (measurement) time is also discretized and this would transform the
convolution integral into a summation over the relevant duration. Further, in order to formulate an indirect interfacial
force estimation method based on the inverse modal analysis procedure, eigensolutions of the downward sub-system
could be utilized in the formulation. The convolution integral (or a summation) must be inversely solved with a regression
algorithm about the generalized force in modal domain.

2.2. Example case: 5-DOF source–path–receiver network with 6 interfaces

The example case for computational studies is a 5 degrees of freedom (DOF), source–path–receiver model (as shown in
Fig. 2) although other source–path–receiver combinations can be analyzed as well [31,32]. This model captures the essence
of the generic interface problem of Fig. 1. Here, the system consists of single degree of freedom source (subscript S) and
receiver (subscript R) regimes. The interfaces are described by Voight-type viscoelastic elements (with in-situ stiffness and
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Table 1
Parameters and modal properties of the example case of Fig. 2. (a) System parameters. (b) Natural frequencies, orthonormalized eigenvectors and modal

damping ratios.

(a)

Mass elements m (kg) mS=1.48, mR=2.48, m1=0.50, m2=0.90, m3=0.70

Stiffness elements k (kN/m) k1S=k1R=70, k2S=k2R=50, k3S=k3R=40, kRg=90, kSg=0

Damping elements c (Ns/m) c1S=c1R=14, c2S=c2R=10, c3S=c3R=8, cRg=90, cSg=0

Proportionality constant a (s) 0.0002

(b)

Mode index r 1 2 3 4 5

Natural frequency Or (Hz) 5.60 15.3 23.4 28.1 33.1

XS 0.1629 �0.1334 0.0366 �0.0318 �0.0575

X1 0.1361 0.0173 0.0801 �0.1507 0.4794

Modal vectors ur X2 0.1404 0.0245 �0.4180 0.0533 0.0458

X3 0.1375 0.0192 0.1322 0.5658 0.1161

XR 0.1006 0.1599 0.0342 �0.0278 �0.0488

Modal damping ratios zr 0.0035 0.0096 0.0147 0.0177 0.0208
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damping); each interface is given by complex-valued stiffness ~kij ¼ kijþ jocij at frequency o. Paths between the interfaces
are assumed to be rigid and given by masses (m1,m2,m3). Refer to Fig. 2 for all symbols. All stiffness elements are
represented as a combination of an ideal spring and an associated ideal (viscous) damper with a proportionality constant a
(i.e. cij ¼ akij or C¼ aK). In time domain, the force excitation within the source regime is denoted by fSðtÞ and the resulting
displacement of each mass is designated as xiðtÞ (i=S,1,2,3,R). Only vertical motions are considered. The structural
properties of this example are listed in Table 1(a).

For a proportionally damped system of dimension N, Ku¼O2Mu is solved to obtain undamped natural frequencies Or

and generalized eigenvectors ur (r¼ 1; . . . ;N) where r is the modal index. The normal mode matrix U¼ ½u1; . . . ;uN �N�N is
orthonormalized as UTMU¼ I, UTKU¼ diag½O2

r � and UTCU¼ diag½2zrOr �, where I is the identity matrix, diag indicates a
diagonal matrix and zr are the modal damping ratios. See Table 1(b) for the eigenvalues fðtÞ, orthonormalized eigenvectors
(ur) and zr values for the 5-DOF system. System parameters of Table 1(a) are adjusted such that the natural frequencies are
separated by at least 5 Hz. The dynamic compliance magnitude spectra j ~X i=FSðoÞj ði¼ 1;2;3;RÞ are plotted in Fig. 3. Sharp
peaks at the resonances show that the system is lightly damped as also evident from the low damping ratios reported in
Table 1(b). The highest peak among the five resonances is at the first natural frequency, 5.6 Hz, where all masses
participate. The second highest peak of the receiver is at the second natural frequency, 15.3 Hz, but this peak is not very
significant for the paths. However, paths 2, 1 and 3 are most excited, respectively, at 23.4, 28.1 and 33.1 Hz.

Figs. 4(a) and (b) show the relevant 4-DOF sub-systems that would be utilized to estimate the interfacial forces on the
source side ðqiSðtÞ; i¼ 1;2;3Þ, and on the receiver side ðqiRðtÞ; i¼ 1;2;3Þ, respectively, by the sub-system methods
discussed in Sections 4–6. The same sub-systems are selected for either time or frequency domain methods. Any method
that utilizes the sub-system approach (thus a force reconstruction) will be considered as an indirect method in the paper.
Conversely, the force estimation from relative response calculations (by Eq. (1a–b) as discussed in the next section) will be
considered as a direct method as this formulation does not require a sub-system concept to indirectly reconstruct the
forces from absolute response measurements.

3. Transient response and estimation of interfacial forces by a direct time domain method (Method A)

For a proportionally damped system, the time domain response is expressed as a superposition of the normal modes
since the modal matrix U decouples the equations of motion:

xðtÞ ¼UvðtÞ (3)

Here, vðtÞ is the generalized coordinate (displacement). The external force in modal domain is also transformed as
UTfðtÞ ¼KðtÞ. For the rth mode wrðtÞ ¼ wCI

r ðtÞþwinitial
r ðtÞ is expressed by the convolution integral plus initial condition terms

(refer to Appendix A.1. for an analytical derivation):

wrðtÞ ¼
1

Ord

Z t

0
LrðtÞe�zrOr ðt�tÞ sin Ordðt�tÞ

� �
dtþA1ðtÞwrð0ÞþA2ðtÞ _wrð0Þ (4a)

A1ðtÞ ¼ e�zrOr t cosOrdtþ
zrffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

r

q sinOrdt

0
B@

1
CA; A2ðtÞ ¼

1

Ord
e�zrOr t sinOrdt (4b-c)
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Fig. 4. Sub-systems utilized for indirect interfacial force estimation methods: (a) sub-system to determine the interfacial forces qiSðtÞ and ~Q iSðoÞ on the

source (S) side and (b) sub-system to determine the forces qiRðtÞ and ~Q iRðoÞ on the receiver (R) side.
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Then, the transient response is given by Eqs. (3) and (4a). If both the interfacial properties (kij and cij) and the transient
motion response are known, the interfacial forces can be estimated by the direct method as given by Eq. (1a), where the
differentiation (or integration) may numerically be executed as

_xðtiÞ �
xðtiþ1Þ�xðtiÞ

tiþ1�ti
; xðtiÞ ¼

Z tiþ 1

ti

_xðtiÞdt�
1

2
ðtiþ1�tiÞð _xðtiþ1Þþ _xðtiÞÞ (5a-b)

We designate this calculation technique as ‘‘Method A’’ and consider it as a direct method as mentioned in Section 2.
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For discrete time events or measured data the evaluation (measurement) time is discretized as t¼ t1; t2; . . . ; td (s) such
that t1 ¼ 0 and time resolution h¼ tiþ1�ti. For subsequent use, the convolution integral (Eq. (4a)) is now approximated by
a summation that may be obtained by calculating each trapezoid area between each time interval. At t¼ td ¼ ðd�1Þh, the
integrand wCI

r in Eq. (4a) takes d values and the convolution integral may be calculated by a sum of (d�2) trapezoid areas
and one triangle area as described below (Appendix A.2. provides an analytical derivation):

t¼ 0 : Lrð0Þe
�ðd�1ÞzrOr h sinðd�1ÞOrdh� Ið0Þd�1 (6a)

t¼ h : LrðhÞe
�ðd�2ÞzrOr h sinðd�2ÞOrdh� IðhÞd�1 (6b)

t¼ 2h : Lrð2hÞe�ðd�3ÞzrOr h sinðd�3ÞOrdh� Ið2hÞ
d�1 (6c)

^

t¼ jh : LrðjhÞe
�ðd�1�jÞzrOrh sinðd�1�jÞOrdh� IðjhÞd�1 (6d)

^

t¼ ðd�1Þh : Lrððd�1ÞhÞe0 sin 0¼ 0 (6e)

Therefore, the convolution integral in wCI
r ðtÞ is estimated by

wCI
r ðtdÞ ¼ wrððd�1ÞhÞ ¼

h

Ord

Xd�2

j ¼ 1

IðjhÞd�1þ
h

2Ord
Ið0Þd�1 (7)

Note that the difference in the integrand I depends on the end time of each interval. Also, observe that the convolution
integral term wCI

r ðtÞ does not include the initial conditions at t¼ t1 ¼ 0. When the initial conditions (x0 and _x0) are known
(or applicable), the initial term winitial

r ðtÞ in Eq. (4a) is easily estimated.

4. Frequency domain methods and inverse fast Fourier transform (Method B)

4.1. Estimation of interfacial forces in frequency domain

Interfacial forces are next indirectly estimated in frequency domain based on the forced harmonic responses of the
system and frequency response functions (FRFs) of sub-systems that are downward from the interfacial points. Note that
even though an indirect, yet exact, formulation can be developed for analytical or computational work, some difficulties
arise in implementing it in practice due to measurement restrictions [1].

Consider a harmonic excitation force fiðtÞ at any mass mi in Fig. 2. Under steady state, forces and resulting displacement
responses are

fiðtÞ ¼ Fi cosðotþjfi
Þ ¼ Re½ ~F ie

jot�

xiðtÞ ¼ Xi cosðotþjxi
Þ ¼ Re½ ~X ie

jot�

8<
: (8a, b)

The complex-valued amplitudes ~F ið ¼ Fie
jjfi Þ and ~X ið ¼ Xie

jjxi Þ include phases (jfi
,jxi

). The ubiquitous ejot terms are
omitted henceforth. The governing equations at o corresponding to Eq. (2) are

½ ~KðoÞ�o2M� ~XðoÞ ¼ ~FðoÞ (9)

where ~K is the complex stiffness ~KðoÞ ¼Kþ joC, ~XðoÞ ¼ ð ~X 1; . . . ; ~X NÞ
T and ~FðoÞ ¼ ð ~F 1; . . . ; ~F NÞ

T. If necessary, structural
damping could be described as ~K 0 ¼Kþ jCstructural. The displacement responses of Eq. (9) may be solved either by matrix
inversion or by modal analysis:

~XðoÞ ¼ ~Z
�1
ðoÞ ~FðoÞ ¼ ~HðoÞ ~FðoÞ; where ~ZðoÞ ¼ ~H

�1
ðoÞ ¼ ~KðoÞ�o2M (10)

~XðoÞ ¼
XN

r ¼ 1

uT
r
~FðoÞ

O2
r�o2þ2jozrOr

ur (11)

Eq. (10) could be used for either proportional or non-proportionally damped systems, but the matrix inversion process
could involve computational issues, such as ill-conditioning (singularity) and intense calculation time. Thus, Eq. (11) is
often preferred for proportionally damped systems. Since a periodic input can be decomposed into a sum of harmonic
terms by Fourier series, Eqs. (10) and (11) are valid for periodic excitations as well.

The interfacial forces can be indirectly estimated using the sub-system concept. Define the dynamic compliances
~Hu;v ¼ ð

~X u=FvðoÞÞ of the sub-system, where u;v¼ 1; . . . ; g. Here g is the dimension of the sub-system. Interfacial forces can
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be determined at each o by inverting ~HðoÞ of the sub-system, together with the forced vibrations of the whole
system:

~F 1ðoÞ
^

~F gðoÞ

0
BB@

1
CCA¼

~H1;1ðoÞ � � � ~H1;gðoÞ
^ ^

~Hg;1ðoÞ � � � ~Hg;gðoÞ

0
BB@

1
CCA
�1

sub-system

~X 1ðoÞ
^

~X gðoÞ

0
BB@

1
CCA

whole
system

(12)

where ~F uðoÞðu¼ 1; . . . ; gÞ are equivalent to the interfacial forces ~Q ijðoÞ of the original system. Expanding Eq. (12) for the
uth path and decomposing it into contributions from each path, interfacial forces for the uth path can also be found as

~Q ijðoÞ ¼ ~F uðoÞ ¼
X

n

~F u

Xn
ðoÞ

�����
BBC

~X nðoÞ (13)

where the summation about n is taken for the interfacial points and ~F u=XnðoÞ are the dynamic stiffness terms of the sub-
system with blocked boundary conditions (BBCs) [1,33,34]. The main advantage of Eq. (13) over Eq. (12) is that only
driving-point FRFs are required by Eq. (13) when determining the interfacial forces. However, it is difficult to implement
the blocked boundary conditions in experimental work. Hence, the matrix inversion method Eq. (12) is often employed
although it requires additional calculations or measurements.

Alternatively, the pseudo-inverse method (given by superscript +) may also be used to determine the interfacial forces
[23–25]:

~FðoÞ ¼ ð ~HðoÞÞþ ~XðoÞ

ð ~HðoÞÞþ ¼ ½ð ~HðoÞÞTð ~HðoÞÞ��1ð ~HðoÞÞT (14a, b)

Observe that the indirect formulations (Eqs. (12)–(14)) are exact and equivalent to the direct formulation (Eq. (1b)). Refer
to [1] for analytical details and some closed form solutions.

4.2. Estimation of interfacial forces by inverse Fourier transform (Method B)

One common practice to obtain the time domain response of a vibratory system is to employ the inverse fast
Fourier transform (IFFT) given the frequency domain results [35]. For discrete-time data, sequence yðnhÞ in time domain is
given by

yðnhÞ ¼Df
XNp�1

k ¼ 0

~Y ðkDf Þejð2pkn=NpÞ; n¼ 0;1;2; . . . ;Np�1 (15)

where n is the sequence index, h the time resolution (s), Df the frequency resolution (Hz), Np the number of points and k

the spectral index. The corresponding fast Fourier transform (FFT) is defined as follows:

~Y ðkDf Þ ¼ h
XNp�1

k ¼ 0

yðnhÞe�jð2pkn=NpÞ; k¼ 0;1;2; . . . ;Np�1 (16)

Now, consider an ideal periodic sawtooth input fSðtÞ with a period of T=0.1 s, and amplitude of A=10 N, as shown in
Fig. 5(a). The spectral content of this input j ~F SðoÞj is shown in Fig. 6(a), and the resulting displacement response
spectra for the paths and the receiver j ~X iðoÞj (i=1,2,3,R) are displayed in Fig. 6(b). The receiver response ðxRðtÞÞ and the
interfacial forces on the source side of path 1 ðq1SðtÞÞ are calculated by two alternate methods: (i) find the ‘‘true’’ transient
response by Eq. (4a) and employ Method A; (ii) employ Eq. (15) given ~Q 1SðoÞ obtained by using Eq. (12) with a
selected sampling frequency fsp=500 Hz, and number of data points Np=4096 (212). Figs. 5(b) and (c) show that the second
method disregards the majority of the starting transients for the selected time window (tsp=8.192 s). If the sawtooth
amplitude A is increased, the starting transients would be even more significant. Obviously such transients cannot be
disregarded. To improve the IFFT based force estimate (for a given external excitation), we suggest one of the following two
strategies.

Strategy I. Increase the number of data points (say 214=16,384 points for the example case) to extend tsp and sample a
longer transient duration. The number of needed points however would increase even more (theoretically to infinity) for
systems with small damping and for transient excitations such as an impulse-like excitation.

Strategy II. First, calculate the ‘‘true’’ transient xðtÞ using Eq. (4a). Second, transform the response to frequency domain
ð ~XðoÞÞ by FFT (Eq. (16)). Third, calculate the interfacial forces in frequency domain by Eq. (12). Finally, transform the
interfacial forces back to the time domain by the IFFT process (Eq. (15)) and obtain transient qijðtÞ. We designate this
calculation strategy as Method B.

Although accurate results with a lower Np may be obtained by the second strategy (Method B), the overall accuracy still
depends on a proper selection of the sampling parameters. For example the sampling frequency (fsp) should be at least four
times greater than the maximum analysis frequency to avoid the aliasing problem and yet Df should be kept small enough
to capture the details in the spectrum. A typical error analysis is given in Table 2, where the average root-mean-square
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errors ðermsÞ in transient forces, as yielded by Method B, are shown for various fsp assuming that Method A yields the true
solution for an ideal input (which is validated later in Section 7):

erms ¼
1

Np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

n ¼ 1

ðqijðtÞ�qideal
ij ðtÞÞ2

vuut (17)

When the sampling frequency fsp is reduced, a rapid growth in errors is seen in Table 2. Since we are primarily interested in
lower frequency regime and the Or values of the example case are between 5.6 and 33.1 Hz, a relatively low fsp (such as
500 Hz) yields satisfactory results. However, when the system has higher natural frequencies, a very high value of fsp

should be chosen; this would significantly reduce the time window (tsp) for a given Np (and that would yield additional
sampling errors). Hence, selection of sampling parameters is a primary issue whenever Method B were to be employed.
Also, one should apply proper windows to avoid the leakage problem and to ensure that no transients are ‘‘edited’’ out.
Given the underlying sampling issues and two domain transformations (using the computational process), true time
domain approaches, as described next in Sections 5 and 6, propose promising alternatives to the IFFT method to estimate
the transient interfacial forces.

5. Indirect interfacial force estimation in time domain by inverse modal analysis (Method C)

Recall the matrix formulation that was developed in Section 4 (Eq. (12)) to determine the interfacial forces in frequency
domain utilizing the forced (whole) system response ð ~XðoÞÞ, and the dynamic compliance matrix ð ~HðoÞÞ of the sub-system.
The corresponding time domain formulation can be expressed in the following convolution ð�Þ product:

f1ðtÞ

^

fgðtÞ

0
B@

1
CA

whole
system

¼

h1;1ðtÞ � � � h1;gðtÞ

^ ^

hg;1ðtÞ � � � hg;gðtÞ

0
B@

1
CA
�1

sub-system

�

x1ðtÞ

^

xgðtÞ

0
B@

1
CA

whole
system

(18)

Here hi; jðtÞ are the impulse response terms of the sub-system, and fu(t)(u=1,?,g) are equivalent to the interfacial forces
qijðtÞ of the original (whole) system. However, this calculation approach is extremely inefficient as it requires g2
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Table 2
Average root-mean-square errors ðermsÞ as caused by the choice of sampling frequency (fsp) in Method B. Benchmark is the true response yielded by

Method A.

erms in interfacial force (N)

Interfacial force fsp=1000 Hz fsp=500 Hz fsp=300 Hz fsp=100 Hz

q1S(t) 0.0004 0.0007 0.0065 0.0202

q2S(t) 0.0003 0.0005 0.0046 0.0146

q3S(t) 0.0002 0.0004 0.0037 0.0116

q1R(t) 0.0024 0.0047 0.0069 0.0126

q2R(t) 0.0017 0.0034 0.0049 0.0091

q3R(t) 0.0016 0.0027 0.0040 0.0072
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convolution integral calculations at each discrete time, which is practically impossible to execute. The time domain
correspondents of Eqs. (13) and (14) also have the same problem. Therefore, the regression algorithm illustrated in
Section 3 (and derived in Appendix A.2.) is utilized to develop a more tractable transient interfacial force estimation
method.

Based on the response xðtÞ and modal data (Or , zr and ur), the external force fðtÞ to the system is constructed by an
inverse procedure. In order to obtain the interfacial forces, utilize Or , zr and ur of the sub-system whose external forces act
as the interfacial forces, and xðtÞ of the whole system. Here, assume that x0 and _x0 are known. Because of the difference in
the integrand I at each discrete time, the inverse modal synthesis is far more complicated than the regular modal analysis.
The proposed steps are given below. (Refer to Appendix A.2. for equations starting with A.)
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First, the response xðtÞ is transformed into modal domain by Eq. (11) applying U�1xðtÞ ¼ vðtÞ. Then, the wCI
r ðhÞ term is

extracted as wCI
r ðtÞ ¼ wrðtÞ�winitial

r ðtÞ, where winitial
r ðtÞ is known given x0 and _x0. When t¼ t2 ¼ h, Eq. (A6) gives

Lrð0Þ ¼
2OrdwCI

r ðhÞ

hLden
r

(19)

where Lrð0Þ is the generalized force at t¼ t1 ¼ 0, and Lden
r � e�zrOr h sinOrdh is defined for the sake of convenience. Next, at

t¼ t3 ¼ 2h, the generalized force at t¼ t2 ¼ h is obtained from Eq. (A8):

LrðhÞ ¼

OrdwCI
r ð2hÞ

h
�

Ið0Þ2

2
LDen

r

¼

OrdwCI
r ð2hÞ

h
�
Lrð0Þe�2zrOr h sin 2Ordh

2
LDen

r

(20)

where Lrð0Þ is defined by Eq. (19). Next, at t¼ t4 ¼ 3h, the generalized force at t¼ t3 ¼ 2h is obtained using Eq. (A10) as

Lrð2hÞ ¼

OrdwCI
r ð3hÞ

h
�

Ið0Þ3

2
�IðhÞ3

LDen
r

(21a)

Replacing the integrands Ið0Þ3 and IðhÞ3 of Eq. (21a) by Eqs. (A9a) and (A9b) gives

Lrð2hÞ ¼

OrdwCI
r ð3hÞ

h
�
Lrð0Þe�3zrOr h sin 3Ordh

2
�LrðhÞe�2zrOr h sin 2Ordh

Lden
r

(21b)

Here, Lrð0Þ and LrðhÞ may be obtained from Eqs. (19) and (20), respectively.
Similarly, at t¼ td ¼ ðd�1Þh, the generalized force at t¼ td�1 ¼ ðd�2Þh is calculated using the previously obtained LrðjhÞ

values for j¼ 1; . . . ; ðd�3Þ as

Lrððd�2ÞhÞ ¼

OrdwCI
r ððd�1ÞhÞ

h
�

Ið0Þd�1

2
�
Pd�3

j ¼ 1 IðjhÞd�1

Lden
r

(22a)

Replacing the integrands of Eq. (22a) by Eqs. (6a) and (6d) gives

Lrððd�2ÞhÞ ¼
1

Lden
r

OrdwCI
r ððd�1ÞhÞ

h
�
Lrð0Þe�ðd�1ÞzrOr h sinðd�1ÞOrdh

2
�
Xd�3

j ¼ 1

LrðjhÞe
�ðd�1�jÞzrOr h sinðd�1�jÞOrdh

2
4

3
5 (22b)

Here, Lrð0Þ, LrðhÞ; . . . ;Lrððd�3ÞhÞ are the generalized forces at previous discrete time steps t1,t2; . . . ; td�2 that are calculated
during the execution of the regression algorithm. Unlike the response obtained in Section 3, which can be calculated in any
order about time, the force obtained here (using the sub-system approach) must be calculated in the proper sequence at
t¼ t1; t2; . . . ; td�1, from past to future, due to the regression algorithm about Lr . Note that the generalized force Lrððd�1ÞhÞ
at t¼ td ¼ ðd�1Þh is still unknown, since the final terms, such as Eq. (6e), are always zero. Finally, the external force vector
is estimated as

fðtÞ ¼ ðUT
Þ
�1KðtÞ (23)

Here, t¼ t1; t2; . . . ; td�1 due to the above mentioned limitation, and fðtdÞ is still unknown. As noted before, fðtÞ of sub-system
corresponds to qðtÞ of the original (whole) system. Note that although this reconstructed transient force vector fðtÞ has the
same dimension as of the sub-system, the forces are, of course, zero at those elements, where no external force to the sub-
system exists. For instance, if qiSðtÞ ði¼ 1;2;3Þ are of interest and sub-system of Fig. 4(a) is utilized, the forces on the
receiver must be zero since there is no external force that acts on the receiver of the sub-system. The proposed estimation
scheme developed in this section is labeled as ‘‘Method C’’. It should be a promising alternative to two methods (A and B) as
well as to the other force reconstruction techniques that are well described in the literature [21–28].

6. Indirect interfacial force estimation in time domain using sub-system matrices (Method D)

The proposed estimation scheme of Section 5 (Method C) can be used only when the modal domain properties are fully
known. However, if the system parameters ðM;K and CÞ are known, interfacial forces can be estimated by a simpler, and
approximate approach that is designated as Method D. In this formulation we simply incorporate the sub-system matrices
in Eq. (2) along with corresponding measured responses, and execute the numerical differentiation or integration (Eq. (5)).
Overall, Method D will have a somewhat limited utility for many practical problems since it is easier to measure relevant
mode shapes and natural frequencies (as required by Method C) rather than estimating physical system properties.
Although Methods A and D both require the knowledge of interfacial properties, the chief advantage of Method D over
Method A is that it requires absolute motion measurements (instead of the relative motions), which is usually less
erroneous and easier to measure in most real-life systems.
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7. Comparative evaluation of four time domain methods (A–D)

The proposed transient methods are graphically summarized in Fig. 7. The left hand side of the schematic outlines the
system response calculation given external excitation (for computational purposes), and the right hand side depicts the
indirect interfacial force estimation methods. Note that the symbols f and f�1 stand for fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT).

Next, the indirect force estimations (using Methods C and D) are computationally compared with the direct time
domain calculation (Method A) and the frequency domain approach using IFFT (Method B) for the example case of Fig. 2
and Table 1. Interfacial forces on the source side qiSðtÞ ði¼ 1;2;3Þ and on the receiver side qiRðtÞ ði¼ 1;2;3Þ of all three paths
are analyzed under two different input forces fSðtÞ. First, an ideal impulse excitation is applied to observe the transient
interfacial forces. Second, a periodic sawtooth excitation with period T=0.1 s and amplitude A=10 N as previously shown in
Fig. 5(a) is selected; in this case, we add a significant Gaussian noise (with mean=0.5 N and variance=5 N2) component to
simulate the sensitivity of each method to random noise that is bound to be present in all real-life measurements. For each
force input case, all initial conditions are assumed to be zero for the sake of convenience. To implement Method B,
sampling parameters are selected as follows (refer to the prior discussion): fsp=500 Hz with Np=4096 (212) data points.

7.1. Ideal impulse force

The estimated path forces under an ideal impulse excitation are presented in Figs. 8 and 9 for paths 1 and 3,
respectively, which correspond to the most and least dominant paths in terms of the transmitted forces. The results are
given both in time and frequency domain for the first path in Fig. 8. The time domain methods (A–D) are compared in
Figs. 8(b) and (d) from t=0 to1.0 s, and their frequency domain correspondents are given in Figs. 8(a) and (c), which
correspond to the following four sets: (i) direct method in frequency domain as given by Eq. (1b); (ii) indirect method in
frequency domain as expressed by Eq. (12) (Method B without taking the IFFT); (iii) FFT of the results yielded by Method C
and (iv) FFT of the results yielded by Method D. Both time and frequency domain results show excellent consistency among
the methods. In particular, Methods A,B,C are nearly coincident, and Method D shows only minor deviations. For path 3,
only time domain results are presented (in Fig. 9) as we are primarily interested in the transient forces. Again, A,B and C
virtually coincide, and Method D shows similar results though negligibly small deviations (compared with A, B or C) are
seen especially at the peaks.

7.2. Comparison of interfacial forces for sawtooth force input with Gaussian noise

Next, a periodic sawtooth force input (with A=10 N and T=0.1 s) with a significant Gaussian noise (mean=0.5 N,
variance=5 N2) is applied at the source to observe the sensitivity of each method to the noise. No time domain averaging
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process (or any other noise reduction technique) is used. The results are shown in Figs. 10 and 11 for paths 1 and 3,
respectively. The ideal interfacial forces (in the absence of noise) are also plotted for the time domain methods as the
benchmark. Observe that all methods show some deviations, but it is difficult to tell which method (with noise) is closest
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to the ideal (without noise). Methods A and C are almost coincident as they rely on the same calculated transient response.
The deviations of Method D (not only from the ideal one but also from other curves) are even more visible especially for the
interfacial forces on the receiver side.

To obtain more quantitative results, erms (given by Eq. (17)) is calculated for each method based on time histories from
t=0 to t=8.192 s (=tsp for Method B). Here, erms is also calculated with Np=16,384 (214) data points for Method B (over the
same time interval) in order to observe the effect of number of sampling points and the results are listed in Table 3. It may
be seen that erms for Method B with Np=4096 (212) is very close to those of Methods A and C; such errors can be further
reduced by selecting more sampling points. Method D has larger errors than other methods especially on the receiver side
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(though still acceptable). Further analyses show that the mean of noise signal (and not the noise variance) controls most of
the difference among the time domain methods. Overall, Method B seems to be slightly less sensitive to noise, but other
time domain methods are still accurate and yield better results than Method B in certain time intervals. Thus, it would be a
good practice to estimate the interfacial forces based on several methods rather than relying on a particular method
especially in the presence high ambient (random) noise.

7.3. Method selection considerations

The feasibility studies clearly demonstrate that the time domain methods (A–D) yield (almost) an exact answer for an
ideal input, and each one is capable of giving satisfactory results in the presence of random noise. However in practice,
other considerations will dictate the choice of a method. For instance, Methods A and D essentially depend on the
interfacial properties (i.e. kij and cij), which are usually difficult to estimate in many real-life problems. The applicability of
Method C relies on the system modal parameters (when known). The accuracy of Method B, on the other hand, relies on
the choice of sampling parameters as discussed before. Other signal processing issues such as leakage should also be
considered when employing Method B. Thus, pure time domain methods (Methods A, C or D) are more desirable, when
applicable, for transient conditions.

8. Preliminary experimental validation

To further validate the time domain methods, a simple experiment is developed and some initial results are obtained.
Refer to Fig. 12(a) for the measurement setup, which consists of a plate–beam–plate structure to represent a source–path–
receiver network, an impact hammer, an accelerometer and a two-channel FFT analyzer. The plate–beam–plate structure,
which can be seen more clearly in Fig. 12(b), simulates the generic vibration problem well with parallel transmission paths
as illustrated in Fig. 1; it consists of a source plate, a receiver plate, three parallel beams that act as transmission paths and
finally compliant (rubber) materials as interfaces. These compliant materials, which reduce the number of modes of the
overall system over the lower frequency regime, have low stiffness and high damping properties (though of unknown
values) in comparison with those of the steel plates and beams. The source plate ðmSÞ, the receiver plate ðmRÞ and the three
identical parallel beams ðm1 ¼m2 ¼m3Þ are represented as pure mass elements with the following values:mS ¼ 0:444 kg,
mS ¼ 0:926 kg and m1 ¼m2 ¼m3 ¼ 0:08 kg. Therefore it is convenient to model the system as a 5-DOF source–path–
receiver network, just like in Fig. 2, with known M matrix but unknown K and C matrices.

An impulsive force fSðtÞ is applied to the source plate ðmSÞ with a force gauge equipped modal hammer, and the
acceleration data of the paths in the vertical direction €xiðtÞ (i=1, 2, 3, R) are measured by the accelerometer(s) and processed
by the FFT analyzer, which also computes the accelerances j

~€X i=FSðoÞj (i=1, 2, 3, R). The five resonance peaks ð ~Q
peak

r Þ of
resulting spectra are estimated as the natural frequencies ðÔrÞ of the 5-DOF model although only a few modes are
dominant. Here, ^ denotes an estimated value. The corresponding mode shapes are estimated as

ûr ¼
uIP

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uIP

r MuIP
r

q where uIP
r ¼ Im½ ~Q

peak

r � (24)

The damping ratios ðẑrÞ are estimated by the half-power method [29].
Since the system is a simple structure and one of the system matrices is already known (i.e. M), it is possible to estimate

the structural properties (K and C matrices) of the system using the experimental data. If a good estimate of the system
matrices can be found, it is easier to experimentally apply Method D rather than Method C. The structural properties
(K and C matrices) can be estimated as

K̂ ¼ ðÛ
T
Þ
�1diag½O2

r �Û
�1

and Ĉ ¼ ðÛ
T
Þ
�1diag½2zrOr�Û

�1
(25)

Using these estimated system matrices, xðtÞ is determined by Eq. (3) from Eq. (4a), and _xðtÞ and €xðtÞ are calculated using
Eq. (5). A comparison of the measured and calculated accelerations €x1ðtÞ ¼ ða1ðtÞÞ is shown in Fig. 13(a), which displays a
Table 3
Average root-mean-square errors ðermsÞ for each method when a noisy sawtooth force is applied to the source.

Method erms in interfacial force (N)

q1S(t) q2S(t) q3S(t) q1R(t) q2R(t) q3R(t)

Method A 0.011 0.007 0.006 0.013 0.009 0.007

Method B, 4096 points 0.010 0.007 0.006 0.011 0.008 0.007

Method B, 16,384 points 0.006 0.004 0.004 0.008 0.006 0.004

Method C 0.011 0.007 0.006 0.013 0.009 0.007

Method D 0.012 0.008 0.006 0.017 0.013 0.011
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Fig. 12. Experimental configuration: (a) plate–beam–plate structure, impact hammer, accelerometer and a two-channel FFT analyzer and (b) a zoomed

view to plate–beam–plate structure representing a source–path–receiver network. Compliant materials are inserted between the plates and the beams to

represent the interfaces.
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relatively good match. Knowing the M, Ĉ and K̂ matrices, qiSðtÞ (i=1, 2, 3) is now determined by Method D for both
theoretical and experimental responses, and the resulting forces q1SðtÞ are shown in Fig. 13(b). The two curves show a
consistent trend and the sources of error are the following: (i) integration of measured acceleration data; (ii) unwanted
rigid body rotations and flexural motions of the source and receiver plates although an attempt is made to excite only the
vertical motions; (iii) bias errors due to the lumped system model. The usage of a more continuous structure and an
experimental application of sub-system approach might produce better results.
9. Conclusion

A structural path rank ordering process under transient excitations requires a good knowledge of the interfacial path
forces, which are difficult to directly measure. Four time domain methods to estimate the interfacial forces are proposed
and comparatively evaluated with application to linear time-invariant, proportionally damped discrete systems. First the
transient response is outlined and a direct time domain technique (Method A) is given. Then the frequency domain
estimation methods are reviewed, and the inverse Fourier transform scheme (Method B) is introduced. The transient
interfacial forces are also derived from an alternate approach using the inverse modal analysis. The convolution integral
assumes a summation form for discrete time data, and the trapezoid integration formula is inversely solved with
regression algorithm about the generalized force KðtÞ in modal domain. The sub-system concept is employed to obtain
the interfacial forces based on the forced vibration response of original system and modal data (Or , zr and ur) of the



ARTICLE IN PRESS

0

0

0

a 1
 (t

) (
m

/s
2 )

q 1
S
 (t

) (
N

)

50

40

30

20

10

-10

-20

-30

-40

Time (s)
0.0

02
0.0

01
0.0

03
0.0

04
0.0

05
0.0

06
0.0

07
0.0

08
0.0

09 0.0
1

0

Time (s)
0.0

02
0.0

01
0.0

03
0.0

04
0.0

05
0.0

06
0.0

07
0.0

08
0.0

09 0.0
1

200

150

100

50

-50

-100

-150

-200

Fig. 13. Comparison of theoretical ( ) and experimental ( ) results: (a) Acceleration on path 1 ða1ðtÞÞ and (b) interfacial forces on the source

side of path 1 ðq1SðtÞÞ.

A. Gunduz et al. / Journal of Sound and Vibration 329 (2010) 2616–2634 2631
sub-system (Method C). An approximate time domain scheme (Method D) is also suggested, which could be used only if
the system properties are known or precisely estimated. The four interfacial force formulations are compared for a 5-DOF
source–path–receiver system (with three parallel paths) under an ideal impulse and a noisy periodic sawtooth force. It is
observed that Method C exactly matches Methods A and B though Method D also gives similar results with negligible
deviations for an ideal impulse excitation. For a noisy periodic input some deviations are observed in each method
although they are still satisfactory. Preliminary measurements on a laboratory experiment that utilizes Method D, are close
to theoretical calculations though some deviations could be seen due to experimental sources of error.

The indirect formulations to estimate transient interfacial forces are novel time domain approaches. The proposed
methods may overcome the errors introduced by the transfer function based frequency domain analyses (and related
transformations) and may especially be useful to analyze lightly damped structures excited by transient excitations, or any
particular system where the transient forces or responses are significant; this forms the key contribution of our article.
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Appendix A

A.1. Derivation of the convolution integral

The differential equations of motion of dimension N (Eq. (2)) may be solved using the Laplace (s) transformation
L½xðtÞ� ¼ xðsÞ. Eq. (2) leads to xðsÞ ¼ Z�1

ðsÞnðsÞ, where dynamic stiffness is given by ZðsÞ ¼ s2MþsCþK. Dynamic force in the s

domain is nðsÞ ¼ f ðsÞþðsMþCÞx0þMB0, where x0 and _x0 are the initial displacement and velocity vectors, respectively. In
order to execute the inverse Laplace transformation of xðsÞ, the characteristic equation jZðsÞj ¼ 0, which results in a
polynomial equation of order 2N in s, has to be numerically solved to obtain all poles of Z�1

ðsÞ. However, this approach
becomes tedious with an increase in N, and thus the modal expansion approach must be adopted.

The time domain response xðtÞ can be expressed as a superposition of the normal modes for a proportionally damped
system where U is the modal matrix. (The second number in parenthesis refers to the original equation number in the main
paper):

xðtÞ ¼UvðtÞ (A1) (3)

Here, vðtÞ is the generalized coordinate (displacements). The external force in modal domain is also transformed as
UTfðtÞ ¼KðtÞ. By pre-multiplying Eq. (A1) with UT and taking advantage of orthogonal properties, the de-coupled equation
of motion for the rth mode is as follows:

€wrþ2zrOr _wrþO
2
r wr ¼Lr ; r¼ 1;2; . . . ;N (A2)

The solution of Eq. (A2) can be obtained through the Laplace transformation:

wrðsÞ ¼
LrðsÞþðsþ2zrOrÞwrð0Þþ _wrð0Þ

ðsþzrOrÞ
2
þO2

rd

(A3)

where Ord ¼Or

ffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

r

q
; wrð0Þ and _wrð0Þ depend on the initial displacement and velocity, respectively, of the rth mode.

Taking the inverse Laplace transformation of Eq. (A3), wrðtÞ ¼ wCI
r ðtÞþwinitial

r ðtÞ, where wCI
r ðtÞ is expressed by the convolution

integral:

wrðtÞ ¼
1

Ord

Z t

0
LrðtÞe�zrOr ðt�tÞ sin Ordðt�tÞ

� �
dtþA1ðtÞwrð0ÞþA2ðtÞ _wrð0Þ (A4a) (4a)

A1ðtÞ ¼ e�zrOr t cosOrdtþ
zrffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

r

q sinOrdt

0
B@

1
CA; A2ðtÞ ¼

1

Ord
e�zrOr t sinOrdt (A4b-c) (4b-c)

Then, the transient response is given by Eqs. (A1) and (A4).

A.2. Summation approximation of the convolution integral

For discrete time events including experimental data, the evaluation time is discretized at t¼ t1; t2; . . . ; tdðsÞ such that
t1 ¼ 0 and time resolution h¼ ti�tj. At t¼ t2 ¼ h, the integrand of wCI

r in Eq. (A4a) takes two values:

t¼ 0 : Lrð0Þe
�zrOr h sinOrdhð � Ið0Þ1 Þ (A5a)

t¼ h : LrðhÞe
0 sin 0¼ 0 (A5b)

Thus

wCI
r ðhÞ ¼

h

2Ord
Lrð0Þe

�zrOr h sinOrdh (A6)

At t¼ t3 ¼ 2h, the integrand of wCI
r takes three values:

t¼ 0 : Lrð0Þe
�2zrOr h sin 2Ordh� Ið0Þ2 (A7a)

t¼ h : LrðhÞe
�zrOrh sinOrdh� IðhÞ2 (A7b)

t¼ 2h : Lrð2hÞe0 sin 0¼ 0 (A7c)

Thus

wCI
r ð2hÞ ¼

h

Ord
IðhÞ2 þ

h

2Ord
Ið0Þ2 (A8)
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Next, at t¼ t4 ¼ 3h, the integrand of wCI
r takes four values:

t¼ 0 : Lrð0Þe
�3zrOr h sin 3Ordh� Ið0Þ3 (A9a)

t¼ h : LrðhÞe
�2zrOr h sin 2Ordh� IðhÞ3 (A9b)

t¼ 2h : Lrð2hÞe�zrOr h sinOrdh¼ Ið2hÞ
3 (A9c)

t¼ 3h : Lrð3hÞe0 sin 0¼ 0 (A9d)

Thus

wCI
r ð3hÞ ¼

h

Ord
Ið2hÞ
3 þ

h

Ord
IðhÞ3 þ

h

2Ord
Ið0Þ3 (A10)

Similarly, at t¼ td ¼ ðd�1Þh, the convolution integral may be calculated by a sum of (d�2) trapezoid areas and one triangle
area as described below:

t¼ 0 : Lrð0Þe
�ðd�1ÞzrOrh sin ðd�1ÞOrdh� Ið0Þd�1 (A11a) (6a)

t¼ h : LrðhÞe
�ðd�2ÞzrOr h sinðd�2ÞOrdh� IðhÞd�1 (A11b) (6b)

t¼ 2h : Lrð2hÞe�ðd�3ÞzrOr h sinðd�3ÞOrdh� Ið2hÞ
d�1 (A11c) (6c)

^

t¼ jh : LrðjhÞe
�ðd�1�jÞzrOr h sinðd�1�jÞOrdh� IðjhÞd�1 (A11d) (6d)

^

t¼ ðd�1Þh : Lrððd�1ÞhÞe0 sin 0¼ 0 (A11e) (6e)

Therefore, the convolution integral in wCI
r ðtÞ is estimated by

wCI
r ðtdÞ ¼ wrððd�1ÞhÞ ¼

h

Ord

Xd�2

j ¼ 1

IðjhÞd�1þ
h

2Ord
Ið0Þd�1 (A12) (7)
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